Dual convergence of the proximal point method with Bregman distances for linear programming
نویسندگان
چکیده
In this article, we consider the proximal point method with Bregman distance applied to linear programming problems, and study the dual sequence obtained from the optimal multipliers of the linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as convergence rate results for the primal sequence, for a suitable family of Bregman distances. These results are obtained by studying first the limiting behavior of a certain perturbed dual path and then the behavior of the dual and primal paths.
منابع مشابه
On Dual Convergence of the Generalized Proximal Point Method with Bregman Distances
TTie use of generalized distances (e.g.. Bregman distances), instead of Ihe Euclidean one, in the proximal point method for convex optimization, allows for elimination of the inequality constraints from the subproblems. In this paper we consider the proximal point method with Bregman distances applied to linearly constrained convex optimization problems, and study the behavior of the dual seque...
متن کاملProximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds
This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...
متن کاملProximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds
This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...
متن کاملAugmented Lagrangian Methods and Proximal Point Methods for Convex Optimization
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
متن کاملA Proximal Point Algorithm with Bregman Distances for Quasiconvex Optimization over the Positive Orthant
We present an interior proximal point method with Bregman distance, whose Bregman function is separable and the zone is the interior of the positive orthant, for solving the quasiconvex optimization problem under nonnegative constraints. We establish that the sequence generated by our algorithm is well defined and we prove convergence to a solution point when the sequence of parameters goes to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 22 شماره
صفحات -
تاریخ انتشار 2007